
LIME

Version 1.2

SciDAC Software Coordinating Committee

May 4, 2006

1 Introduction

This document describes the LIME file format, LIME API, and some LIME
utilities.

LIME (which can stand for “Lattice QCD Interchange Message Encapsula-
tion” or more generally, “Large Internet Message Encapsulation”) is a simple
packaging scheme for combining records containing ASCII and/or binary data.
Its ancestors are the Unix cpio and tar formats and the Microsoft Corporation
DIME (Direct Internet Message Encapsulation) format. It is simpler and allows
record sizes up to 263 bytes, making chunking unnecessary for the foreseeable fu-
ture. Unlike tar and cpio, the records are not associated with Unix files. They
are identified only by a record-type (LIME type) character string, analogous to
the familiar MIME application type.

The LIME software package consists of a C-language API for creating, read-
ing, writing, and manipulating LIME files and a small set of utilities for exam-
ining, packing and unpacking LIME files.

2 LIME format

A LIME file consists of one or more LIME messages. Each message consists
of one or more LIME records. The grouping of records into messages is at the
discretion of the user. For example, a message might contain a binary numeric
record and some associated ASCII metadata records for describing it. Several
such messages could appear in a single file.

Details of the LIME format are given in the Appendix.

3 LIME API

Here is an example code that creates a LIME file called test file with a single
record. The message is just an ASCII string.

1



#include <stdio.h>
#include <lime.h>
#include <string.h>

int main(){
FILE *fp;
LimeWriter *w;
LimeRecordHeader *h;
char message[] = "LIME test message";
off_t bytes = strlen( message );
int MB_flag, ME_flag;

fp = fopen( "test_file", "w" );
w = limeCreateWriter( fp );
MB_flag = 1; ME_flag = 1;
h = limeCreateHeader( MB_flag, ME_flag, "lime-test-text", bytes );
limeWriteRecordHeader( h, w );
limeDestroyHeader( h );
limeWriteRecordData( message, &bytes, w );
limeDestroyWriter( w );
fclose( fp );
return 0;

}

As shown above, the user is responsible for opening the LIME file with ANSI
fopen and closing it, if necessary, with ANSI fclose. Next, it is necessary to
call for creating the LIME writer structure for the output stream. The pointer
to the writer structure is a handle that is required for all LIME operations on
this stream. For each record, the user then calls to create and write the LIME
header before calling for writing the record data. The data may be written
piecemeal. Each successive call to write record data appends to the record.
After all records are written, the user must destroy the writer to complete the
file.

Reading proceeds in a similar manner. Unlike the ANSI FILE structure, the
reader and writer structures are different.

Create a LIME reader

Prototype LimeReader* limeCreateReader(FILE *fp);
Example r = limeCreateReader(fp);

A NULL return value signals an error.

Destroy a LIME reader

Prototype void limeDestroyReader(LimeReader *r);
Example limeDestroyReader(r);

2



Go to the next LIME record and read the header

Prototype int limeReaderNextRecord(LimeReader *r);
Example limeReaderNextRecord(r);

Returns status codes LIME SUCCESS, LIME ERR PARAM, LIME EOF, LIME ERR READ,
and LIME ERR SEEK. (See table below).

Accessor for the MB flag in the input header

Prototypes int limeReaderMBFlag(LimeReader *r);
Example MB_flag = limeReaderMBFlag(r);

Returns −1 if r is null.

Accessor for the ME flag in the input header

Prototypes int limeReaderMEFlag(LimeReader *r);
Example ME_flag = limeReaderMEFlag(r);

Returns −1 if r is null.

Accessor for the LIME type string in the input header

Prototypes char *limeReaderType(LimeReader *r);
Example lime_type = limeReaderType(r);

Returns NULL if r is null.

Accessor for the number of data bytes specified in the input header

Prototypes off_t limeReaderBytes(LimeReader *r);
Example tot_bytes = limeReaderBytes(r);

Returns −1 if r is null.

Accessor for the number of padding bytes in the input record

Prototypes size_t limeReaderPadBytes(LimeReader *r);
Example pad_bytes = limeReaderBytes(r);

It is unlikely that a user will ever need this accessor, since padding is done
internally. Returns −1 if r is null.

Read data from the current LIME record

Prototypes int limeReaderReadData(void *dest, off_t *n, LimeReader *r);
Example status = limeReaderReadData(dest, &n, r);

The next n bytes of data are read to memory starting from the address dest.
The byte count n is set to the number of bytes actually read. Return status
codes are LIME SUCCESS, LIME EOR, LIME ERR READ, and LIME ERR SEEK.

3



Create a LIME writer

Prototypes LimeWriter* limeCreateWriter(FILE *fp);
Example w = limeCreateWriter(fp);

Returns NULL if an error occurs.

Destroy a LIME writer

Prototypes LimeWriter* limeDestroyWriter(FILE *fp);
Example w = limeDestroyWriter(fp);

Closes the file. If the last record was not marked as the end of a message, writes
a terminal null record. Return codes are LIME SUCCESS and LIME ERR CLOSE.

Destroy a LIME writer

Prototypes LimeWriter* limeDestroyWriter(FILE *fp);
Example status = limeDestroyWriter(fp);

Closes the file. In the present version, if the last record was not marked as the
end of a message, writes a terminal null record. Return codes are LIME SUCCESS
and LIME ERR CLOSE.

Create a LIME header for writing

Prototypes LimeRecordHeader *limeCreateHeader(int MB_flag,
int ME_flag, char *type, off_t rec_len);

Example h = limeCreateHeader(MB_flag, ME_flag, lime_type, n);

Creates a header for writing. The LIME type string is copied to the header
blindly by LIME, so is entirely at the user’s discretion. The record length
rec_len is the total byte count of the record to be written, exclusive of any
padding. On error, a NULL value is returned.

Destroy a LIME header

Prototypes void limeDestroyHeader(LimeRecordHeader *h);
Example limeDestroyHeader(h);

Write the header for a LIME record

Prototypes int limeWriteRecordHeader( LimeRecordHeader *h, LimeWriter* w);
Example status = limeWriteRecordHeader(h, w);

The header structure pointed to by h must first be created by limeCreateHeader.
Return codes are LIME SUCCESS, LIME ERR PARAM, LIME ERR HEADER NEXT, LIME ERR MBME
and LIME ERR WRITE.

4



Write data

Prototypes int limeWriteRecordData( void *source, off_t *nbytes, LimeWriter* w);
Example status = limeWriteRecordData(source, &nbytes, w);

Writes nbytes of data from the buffer pointed to by source. The actual num-
ber of bytes written is returned in nbytes. Return codes are LIME SUCCESS,
LIME ERR PARAM, and LIME ERR WRITE.

Support for random access reading Several utilities are provided for mak-
ing it possible to do random access reading from a LIME file.

Prototypes off_t limeGetReaderPointer(LimeReader *r);
Example offset = limeGetReaderPointer(r);

Get the ANSI file pointer to the next LIME record (current pointer if no record
header has been read).

Prototypes int limeSetReaderPointer(LimeReader *r, off_t offset);
Example status = limeSetReaderPointer(r, offset);

The offset must point to the beginning of a LIME record, or the next read
operation will result in an error. Sets the ANSI file pointer to the specified
absolute byte position and resets the reader state accordingly.

Prototypes int limeReaderSeek(LimeReader *r, off_t offset, int whence);
Example status = limeReaderSeek(r, offset, whence);

Set the record payload pointer as specified by —verb—offset— within the cur-
rent LIME record payload. Possible values of whence are SEEK_SET or SEEK_CUR
with a behavior analogous to the corresponding fseeko parameters. With
SEEK_SET the byte position is specified relative to the start of the payload (off-
set 0). Seeks to a position before the beginning of the payload result in setting
the pointer to zero. Seeks beyond the end of the payload result in setting the
pointer to the byte following the last byte in the payload. When a record is
opened the record payload pointer is set to zero, as would be expected.

Support for random access writing At the level of a whole LIME record,
written additions to an existing file are done only by appending to the file. So
there are no writer counterparts to the set/get reader pointer calls. Since the
user is responsible for opening the file with an ANSI fopen call, the user is free
to open the file for appending, in which case LIME records are appended to the
existing file.

However, random access writing is supported inside an open LIME record
with the following function.

5



Prototypes int limeWriterSeek(LimeWriter *w, off_t offset, int whence);
Example status = limeWriterSeek(w, offset, whence);

Set the record payload pointer as specified by —verb—offset— within the cur-
rent LIME record payload. Possible values of whence are SEEK_SET or SEEK_CUR
with a behavior analogous to the corresponding fseeko parameters. With
SEEK_SET the byte position is specified relative to the start of the payload (off-
set 0). Seeks to a position before the beginning of the payload result in setting
the pointer to zero. Seeks beyond the end of the payload result in setting the
pointer to the byte following the last byte in the payload. When a record is
opened the record payload pointer is set to zero, as would be expected.

Support for multi-threaded read and write access to a file

Prototypes int limeReaderSetState(LimeReader *rdest, LimeReader *rsrc );
Example status = limeReaderSetState(&rdest, &rsrc);

The reader state rdest is copied from rsrc. Both structures must have been
created by the caller.

This call makes it possible for two or more processes to open the same
LIME file for reading. The primary and secondary processes first open the file
and create LIME readers. The primary process positions the file according to
user needs. It then broadcasts its reader structure to the secondary processes.
They use this call to synchronize their LIME readers to the primary reader.

Prototypes int limeWriterSetState(LimeWriter *wdest, LimeWriter *wsrc );
Example status = limeWriterSetState(&wdest, &wsrc);

The writer state wdest is copied from wsrc. Both structures must have been
created by the caller.

The anticipated use case is analogous to that of the LIME reader.

LIME return status codes The following table lists return codes. The
macros are defined by the LIME header lime defs.h.

LIME SUCCESS Success status code
LIME ERR PARAM Bad input argument
LIME ERR HEADER NEXT A header should not be written here
LIME ERR WRITE A write error occurred
LIME EOR End of Record
LIME EOF End of File
LIME ERR READ A read error occurred
LIME ERR SEEK A seek error occurred
LIME ERR MBME MB/ME flags incorrect
LIME ERR CLOSE Error closing file

6



4 LIME Utilities

The examples directory contains the following utilities:

List the contents of a LIME file

Usage lime_contents <lime_file>

Shows details of each record in a LIME file. Prints the contents of each ASCII
message.

Create a LIME file from a list of files, one file per record

Usage lime_pack <list_file> <lime_file>

The file with the list of files to be packed has one line for each file. The line
gives the name (Unix path) of the file and the LIME type string. One record is
created for each file in the order listed. A blank line signifies a break between
messages. Thus the list

file1 type1
file2 type2

file3 type3

generates two LIME messages, the first containing two records with payloads
file1 and file2 and the second consisting of a single record with payload
file3.

Unpack a LIME file, creating one file for each record

Usage lime_unpack <lime_file>

Files are created in a directory with a name constructed by appending .contents
to the end of the name of the LIME file. Within that directory, files are given
names that encode the message number, record number, and LIME type, as in
msgnn.recnn.lime type, where nn is a (one-based) decimal integer that counts
the messages and records within a message in the order of occurrence.

Extract a single LIME record

Usage lime_extract_record <lime_file> <msgno> <recno>

Extracts the specified LIME record to standard output. The message and record
numbers are one-based and are counted in the order of occurrence.

Create a small test LIME file

Usage lime_writer_test1 <lime_file>

7



A Binary LIME format (version 1)

A LIME file consists of any number of concatenated LIME records. Here we
give a detailed description of the LIME record format.

The record consists of a header followed by the data with trailing null
padding to an integer multiple of eight bytes.

header (144 bytes)
data (maximum 263 bytes)
null padding (0 to 7 bytes as needed)

The 144-byte header is organized into 18 64-bit words as follows:

words content
0 − 0 (see below)
1 − 1 data length in bytes
2 − 17 128 byte LIME type (ASCII)

The data length is the true length, exclusive of any LIME padding.
The first 64-bit header word has the following content

bits content
0 − 31 LIME magic number

32 − 47 LIME file version number
48 − 48 Message begin bit
49 − 49 Message end bit
50 − 63 Reserved

The long integer LIME magic number (116441335510 = 456789ab16) is used
to identify a record in LIME format. The LIME file version number is a short
integer.

The three integer numeric values in the header, namely magic number, ver-
sion number, and data length, are written in IEEE big-endian byte order for the
respective data types, namely long, short, and long long. The LIME package
treats all user data blindly as a stream of bytes and writes and reads them in
exactly the order given. Thus if the data has numeric content for which byte
ordering is important, the user must put it in the appropriate order.

8


