Complex macros with three arguments

Again, the naming conventions follow closely those for the functions, except that the arguments are all values, rather than pointers.

name meaning
QLA_c_eq_c_plus_c(c,a,b) c = a + b
QLA_c_eq_c_plus_ic(c,a,b) c = a + ib
QLA_c_eq_r_plus_ir(c,a,b) c = a+ib
QLA_c_peq_r_plus_ir(c,a,b) c = c + a+ib
QLA_c_eqm_r_plus_ir(c,a,b) c =- a+ib
QLA_c_meq_r_plus_ir(c,a,b) c = c - a+ib
QLA_c_eq_c_minus_c(c,a,b) c = a - b
QLA_c_eq_c_minus_ca(c,a,b) c = a - b*
QLA_c_eq_c_minus_c(c,a,b) c = a - ib
QLA_c_eq_c_times_c(c,a,b) c = ab
QLA_c_peq_c_times_c(c,a,b) c = c + ab
QLA_c_eqm_c_times_c(c,a,b) c = -ab
QLA_c_meq_c_times_c(c,a,b) c = c - ab
QLA_r_eq_Re_c_times_c(c,a,b) $ c = \mathop{\rm Re}(ab) $
QLA_r_peq_Re_c_times_c(c,a,b) $ c = c + \mathop{\rm Re}(ab) $
QLA_r_eqm_Re_c_times_c(c,a,b) $ c = -\mathop{\rm Re}(ab) $
QLA_r_meq_Re_c_times_c(c,a,b) $ c = c - \mathop{\rm Re}(ab) $
QLA_r_eq_Im_c_times_c(c,a,b) $ c = \mathop{\rm Im}(ab) $
QLA_r_peq_Im_c_times_c(c,a,b) $ c = c + \mathop{\rm Im}(ab) $
QLA_r_eqm_Im_c_times_c(c,a,b) $ c = -\mathop{\rm Im}(ab) $
QLA_r_meq_Im_c_times_c(c,a,b) $ c = c - \mathop{\rm Im}(ab) $
QLA_c_eq_c_div_c(c,a,b) c = a / b
QLA_c_eq_c_times_ca(c,a,b) c = ab*
QLA_c_peq_c_times_ca(c,a,b) c = c + ab*
QLA_c_eqm_c_times_ca(c,a,b) c = -ab*
QLA_c_meq_c_times_ca(c,a,b) c = c - ab*
QLA_r_eq_Re_c_times_ca(c,a,b) $ c = \mathop{\rm Re}(ab^*) $
QLA_r_peq_Re_c_times_ca(c,a,b) $ c = c + \mathop{\rm Re}(ab^*) $
QLA_r_eqm_Re_c_times_ca(c,a,b) $ c = -\mathop{\rm Re}(ab^*) $
QLA_r_meq_Re_c_times_ca(c,a,b) $ c = c - \mathop{\rm Re}(ab^*) $
QLA_r_eq_Im_c_times_ca(c,a,b) $ c = \mathop{\rm Im}(ab^*) $
QLA_r_peq_Im_c_times_ca(c,a,b) $ c = c + \mathop{\rm Im}(ab^*) $
QLA_r_eqm_Im_c_times_ca(c,a,b) $ c = -\mathop{\rm Im}(ab^*) $
QLA_r_meq_Im_c_times_ca(c,a,b) $ c = c - \mathop{\rm Im}(ab^*) $
QLA_c_eq_ca_times_c(c,a,b) c = a*b
QLA_c_peq_ca_times_c(c,a,b) c = c + a*b
QLA_c_eqm_ca_times_c(c,a,b) c = -a*b
QLA_c_meq_ca_times_c(c,a,b) c = c - a*b

name meaning
QLA_r_eq_Re_ca_times_c(c,a,b) $ c = \mathop{\rm Re}(a^*b) $
QLA_r_peq_Re_ca_times_c(c,a,b) $ c = c + \mathop{\rm Re}(a^*b) $
QLA_r_eqm_Re_ca_times_c(c,a,b) $ c = -\mathop{\rm Re}(a^*b) $
QLA_r_meq_Re_ca_times_c(c,a,b) $ c = c - \mathop{\rm Re}(a^*b) $
QLA_r_eq_Im_ca_times_c(c,a,b) $ c = \mathop{\rm Im}(a^*b) $
QLA_r_peq_Im_ca_times_c(c,a,b) $ c = c + \mathop{\rm Im}(a^*b) $
QLA_r_eqm_Im_ca_times_c(c,a,b) $ c = -\mathop{\rm Im}(a^*b) $
QLA_r_meq_Im_ca_times_c(c,a,b) $ c = c - \mathop{\rm Im}(a^*b) $
QLA_c_eq_ca_times_ca(c,a,b) c = a*b*
QLA_c_peq_ca_times_ca(c,a,b) c = c + a*b*
QLA_c_eqm_ca_times_ca(c,a,b) c = -a*b*
QLA_c_meq_ca_times_ca(c,a,b) c = c - a*b*
QLA_r_eq_Re_ca_times_ca(c,a,b) $ c = \mathop{\rm Re}(a^*b^*) $
QLA_r_peq_Re_ca_times_ca(c,a,b) $ c = c + \mathop{\rm Re}(a^*b^*) $
QLA_r_eqm_Re_ca_times_ca(c,a,b) $ c = -\mathop{\rm Re}(a^*b^*) $
QLA_r_meq_Re_ca_times_ca(c,a,b) $ c = c - \mathop{\rm Re}(a^*b^*) $
QLA_r_eq_Im_ca_times_ca(c,a,b) $ c = \mathop{\rm Im}(a^*b^*) $
QLA_r_peq_Im_ca_times_ca(c,a,b) $ c = c + \mathop{\rm Im}(a^*b^*) $
QLA_r_eqm_Im_ca_times_ca(c,a,b) $ c = -\mathop{\rm Im}(a^*b^*) $
QLA_r_meq_Im_ca_times_ca(c,a,b) $ c = c - \mathop{\rm Im}(a^*b^*) $
QLA_c_eq_c_times_r(c,a,b) $ c = ab \ \ \mbox{($b$\ real)} $
QLA_c_peq_c_times_r(c,a,b) $ c = c + ab \ \ \mbox{($b$\ real)}$
QLA_c_eqm_c_times_r(c,a,b) $ c = -ab \ \ \mbox{($b$\ real)} $
QLA_c_meq_c_times_r(c,a,b) $ c = c - ab \ \ \mbox{($b$\ real)}$
QLA_c_peq_c_times_r(c,a,b) $ c = c + ab \ \ \mbox{($b$\ real)}$
QLA_c_eq_r_times_c(c,a,b) $ c = ab \ \ \mbox{($a$\ real)} $
QLA_c_peq_r_times_c(c,a,b) $ c = c + ab \ \ \mbox{($a$\ real)}$
QLA_c_eqm_r_times_c(c,a,b) $ c = -ab \ \ \mbox{($a$\ real)} $
QLA_c_meq_r_times_c(c,a,b) $ c = c - ab \ \ \mbox{($a$\ real)}$
QLA_c_peq_r_times_c(c,a,b) $ c = c + ab \ \ \mbox{($a$\ real)}$
QLA_c_eq_c_div_r(c,a,b) $ c = a/b \ \ \mbox{($b$\ real)} $

James Osborn 2006-06-25