
Input/Output for QCDVersion 2.3SciDAC Software Coordinating CommitteeMay 25, 20081 IntroductionThis document describes the Input/Output Applications Programmer Interfacedeveloped under the auspices of the U.S. Department of Energy Scienti�c Dis-covery through Advanced Computing (SciDAC) program.Although the QIO I/O system was developed to support the data parallellattice-QCD API called QDP/C and QDP++, it is designed to function inde-pendently of QDP, requiring only the lower level QMP message passing package.Three data models are treated: full volume lattice �elds, consisting of data ofthe same format residing on each site of a hypercubic lattice, subvolume lattice�elds, consisting of data of the same format residing on a hypercubic subset ofa hypercubic lattice (e.g. a 3D time slice), and global data, constant across alllattice sites. Lattice �eld data is distributed among multiple nodes.The �le format consists of a series of logical records. Each record con-tains user-controlled metadata and binary data. An arbitrary combination oflogical records is permitted. The physical �le format is based on a customSciDAC LIME standard, (Lattice QCD Interchange Message Encapsulation),which views the �le as a series of LIME messages, each, in turn, consisting of aseries of LIME records. Details of the physical format are hidden from the user.The LIME package is included with QIO.2 Overview of Binary File Format2.1 IntroductionThe binary �le format has been designed with
exibility in mind. For archivingpurposes, the allowable logical records, metadata, and binary content may befurther restricted. Here we describe the unrestricted format. The archivableInternational Lattice Data Group format is described at the end of this section.Three classes of �le volumes are supported: single-�le volumes, partition-�levolumes and multiple-�le volumes. Single �les are read and written through asingle master node; partition �les are read and written through a set of des-ignated I/O nodes; and multiple �les, through each node. With partition-�le1

and multiple-�le formats the binary data is split into separate �les, one for eachnode that participates in I/O. With the single-�le format, data is contained ina single �le. Single-processor utilities are provided for converting between thepartition-�le and single-�le formats.For single�le format, two modes of �le reading and writing are supported,namely serial and parallel. With serial reading or writing, all data is funneledthrough the master I/O node, which is the only node opening the �le. Withparallel reading or writing, all nodes open the same �le and participate in readingor writing their local data. Whether written serially or in parallel, the resulting�le is exactly the same. Thus a �le can be written serially and read in parallel orvice versa, if so desired. Currently parallel reading/writing from/to partition-�leformats is not supported.2.1.1 Single �le formatSingle binary �les are composed of a series of one or more logical applicationrecords. A single logical record encodes a single lattice �eld, an array of lattice�elds of the same data type, or an array of global data. Physics metadata,managed at the convenience of the applications programmer can be inserted inthe �le header and separately with each logical record header. The applicationsprogrammer views the �le as follows:� File physics metadata� Record 1 physics metadata and binary data� Record 2 physics metadata and binary data� etc.For example, a �le might record a series of staggered fermion eigenvectors fora gauge �eld con�guration. Each record would then map to a single �eld fora color vector. The �le metadata might include information about the parentgauge �eld con�guration and the record metadata might encode the eigenvalueand an index for the eigenvector.For another example, the gauge �eld con�guration in four dimensions isrepresented as an array of four color matrix �elds. The con�guration is conven-tionally written so that the four color matrices associated with each site appeartogether. A �le containing a single gauge �eld con�guration would then consistof a single logical record containing the array of four color matrices.Additional metadata is automatically managed by QIO (without requiringintervention by the applications programmer) to facilitate the implementationand to check data integrity. Thus the �le actually begins with private QIOmetadata and physics metadata and each logical application record consists offour LIME records. Within QIO the �le is viewed as a series of LIME recordsas follows:� Private �le QIO metadata 2

� User �le physics metadata� Record 1 private QIO metadata� Record 1 user physics metadata� Record 1 binary data� Record 1 private checksum� Record 2 private QIO metadata� Record 2 user physics metadata� Record 2 binary data� Record 2 private checksum� etc.The site order of the binary data is lexicographic according to the site coordinateri with the �rst coordinate r0 varying most rapidly. The byte layout of the sitedata is determined by user-supplied \factory" functions. Physical byte orderingof IEEE numeric data (integers and
oating point) is big-endian, regardless ofthe architecture of the processor that creates the �le. To achieve this result,numeric site data within a given logical record must consist of a series of wordsof the same size, such as an SU(3) matrix represented entirely by single precisionwords (or entirely double precision). Mixed precision structures are excluded,but 32-bit integers and
oats may coexist.2.2 Partition �le formatWith cluster computers consisting of many hundreds of processors it may proveimpractical to provide NFS mounts from each processor to a common �le system.Instead processors can be grouped into I/O sets, each with a single I/O nodeand disk. Input �les are fragmented and staged to disks attached to thesenodes and output �les are reassembled from them. Single-processor utilities areprovided for �le disassembly and assembly. It is intended that the installationand implementation hide these details from the user, so the user's view of the�le is the same as with single �le format. Ideally the local software environmentis designed with portability in mind, so that user code calling for �le inputor output will get the same result in the end without any change in the code,whether or not the intermediate volume format happens to be single �le at oneinstallation and partitioned at another.Each partition I/O node processes data only for sites stored on that partition.The data for the binary �eld is divided accordingly, so each partition �le holds�eld data only for the nodes on its partition. For ease in conversion to andfrom single �le format, the site data for a �le is always arranged in a standard\lexicographic" order according to the lattice coordinate. The lexicographic3

rank identi�es the site. A binary site list is placed at the beginning of every �leto identify its contents. The master I/O node, which must also be a partitionI/O node, handles all of the global data in the �le, including �le and recordmetadata and any global binary data. Its �le format is identical to the single�le format, except for the addition of a sitelist record. The other partition �lescontain only site lists and the binary data for the relevant partition.All component �les are given unique names, constructed by attaching the�le extension .volnnnn, where nnnn is the number of the node that reads the�le (with leading zeros). The �le is known to the user by its unextended name.The principal �le read by the master node contains most of the metadata.� Private �le QIO metadata� User �le physics metadata� Binary index of sites� Record 1 private QIO metadata� Record 1 user physics metadata� Record 1 binary data� Record 1 private checksum� Record 2 private QIO metadata� Record 2 user physics metadata� Record 2 binary data� Record 2 private checksum� etc.The secondary �les contain these records:� Binary index of sites� Record 1 binary data� Record 2 binary data� etc.The site index in each case is a table of contents, that is, a list of thelexicographic ranks of all sites contained in the �le in the order of appearance.
4

2.3 Multi�le formatThe API provides for rapid temporary writing of data to scratch disks andreading from scratch disks. In this case it is assumed that the �les are notintended for longer term storage. The �le formats are identical to the partition�le formats with one exception: the site order is internal storage order, ratherthan lexicographic order. This choice is made to reduce cache-misses duringI/O.2.4 ILDG formatThe recently adopted ILDG standard for SU(3) gauge con�guration �les isclosely compatible with the standard SciDAC �le format. The
exibility ofthe standard permits the creation of �les that meet both SciDAC and ILDG re-quirements. Provision is made within QIO to produce and read �les that meetthe standard, even if they were not generated by QIO. ILDG version 1.0 com-patible �les created by QIO have only one lattice �eld and contain the followingLIME records.� SciDAC Private �le QIO metadata� SciDAC User �le physics metadata� SciDAC Binary index of sites� SciDAC private record QIO metadata� SciDAC user physics metadata� ILDG format record (see standard)� ILDG LFN record (see standard)� ILDG binary data record containing the gauge �eld (see standard)� SciDAC private checksumThe content of the ILDG binary data record is identical to the SciDACbinary data record for a �eld with four SU(3) color matrices per site.3 Metadata Standard and ManipulationThe QIO implementation uses an XML encoding for its private �le and recordmetadata. It is hidden above the QIO API. The data is available to the userthrough a C structure with accessor functions for retrieving and setting values.Since QIO processes the user �le and record metadata blindly as a characterstring, QIO places no restrictions on the format of the user metadata.5

4 QIO APIThis section describes the QIO interface.The QIO system provides for binary �le operation for writing and readinglattice �elds and global data. Lattice �elds consist of any data type homoge-neous over lattice sites or an array of such data types. Global data consists of anarray of data types or of strings. The storage of lattice data on the nodes is de-scribed in a QIO_Layout structure, and the information required for presenting�eld data in the correct byte order is encapsulated in \factory" functions.4.1 The layout structureThe structure is de�ned as follows:typedef struct {/* Data distribution */int (*node_number)(const int coords[]);int (*node_index)(const int coords[]);void (*get_coords)(int coords[], int node, int index);size_t (*num_sites)(int node);int *latsize;int latdim;size_t volume;size_t sites_on_node;int this_node;int number_of_nodes;} QIO_Layout;The data distribution (layout) structure has nine members. The node_numbermember is an implementer-supplied function returning the number of the nodethat has the speci�ed lattice coordinate. The node_index member returns thestorage order index for the site on its node. The get_coords member maps thenode number and index values to lattice coordinates. The num_sites memberreturns the number of sites on the speci�ed node. The next two membersspecify the lattice coordinate extent and spacetime dimensionality. The seventhmember speci�es the full spacetime volume. The eighth, the number of sites onthe current node, the ninth, the number of the present node, and the ninth, thetotal number of nodes.Here is an illustration of how the layout structure is loaded from the data inour implementation of the QDP/CAPI prior to a QIO_open_read or QIO_open_writecall:QIO_Layout layout;layout.node_number = QDP_node_number;layout.node_index = QDP_index;layout.get_coords = QDP_get_coords;6

layout.num_sites = QDP_num_sites;layout.latdim = QDP_ndim();layout.latsize = (int *)malloc(layout->latdim*sizeof(int));QDP_latsize(layout.latsize);layout.volume = QDP_volume();layout.sites_on_node = QDP_sites_on_node;layout.this_node = QDP_this_node;layout.number_of_nodes = QDP_numnodes();4.2 Private Record MetadataField data is described by a private QIO record metadata structure. On outputthe application must create and populate the structure. On input, the structureis populated from the �le.The private QIO record metadata is used for consistency checking and forproviding the user a standard tool for recording and discovering the data typebeing stored. Semantically, it serves the same purpose as a BinX record. Itcarries enough information to completely de�ne the binary record format. Therecord metadata is held in an opaque QIO_RecordInfo structure. Elements areaccessed and manipulated through the following functions.Create and populate the private record metadata structure Beforewriting a record the calling program must create the private record metadatastructure. Before reading a record, the calling program must allocate space forthe private record metadata structure using the same calling procedure.Prototype QIO_RecordInfo *QIO_create_record_info(int globaltype,int lower[], int upper[], int n,char *datatype, char *precision, int colors,int spins, int typesize,int datacount);Example rec_info = QIO_create_record_info(QIO_FIELD,"QDP_F_Real","F",0,0,0,0,0,size,1);Example rec_info = QIO_create_record_info(0, "", "", 0,0,0, 0, 0, 0, 0);The �rst example is appropriate for output. The second, for input.The globaltype parameter distinguishes between a record containing a lat-tice �eld and a record containing a lattice constant array.QIO_FIELD, QIO_HYPER, QIO_GLOBALfor �eld (full volume), hypercube (subvolume), and global (constant) recordtypes, respectively.For a hypercube record, the lower and upper parameters are integer arraysspecifying the coordinate lower bounds and coordinate upper bounds of thehypercube. For example, for the contents of time slice 4 on a lattice of dimension323 � 48, use 7

int lower[4] = {0, 0, 0, 4}int upper[4] = {31, 31, 31, 4}The parameter n gives the number of spacetime dimensions of the full latticevolume (in this example, 4).The datatype string is not interpreted by QIO. It allows the applicationsprogrammer a standard way to identify the data type. For that purpose thename should be unique. For QDP/C we use the datatype name of the QDP�eld. For USQCD standard formats, there are special names. For global datawe use the name of one of the QLA datatypes.The precision string is one of these:F singleD doubleS random number generator state consisting of 32-bit
oats and intsI integer (currently only 32-bit is supported)This string is interpreted by the host �le conversion utility.The colors and spins arguments give the working value for these quantities,if they apply to the datatype. Otherwise, they should be zero. They are notinterpreted by QIO.The typesize speci�es the number of bytes per site item and the datacountspeci�es the number of such items per site. The product is the total number ofbytes per site. For example, for a single precision SU(3) gauge �eld with fourcolor matrices per site, the typesize is 72 and the datacount is 4.It is not an error to create a structure with zeros for integer values and nullstring pointers. Those data items are tagged as \missing". However, QIO_writeand QIO_read return an error condition, if the total byte count per site isinconsistent with the values in this structure.Destroy the private record metadata structurePrototype void QIO_destroy_record_info(QIO_RecordInfo *record_info);Example QIO_destroy_record_info(rec_info);Compare two private record metadata structures To allow for veri�-cation that a record being read matches what is expected, the calling programmay create the record information structure that it expects and compare it withthe structure that was read from the �le.Prototype int QIO_compare_record_info(QIO_RecordInfo *found,QIO_RecordInfo *expect);Example int ok = QIO_compare_record_info(rec_info, cmp_info);The arguments are not symmetric. Only those �elds that are non-empty in theexpect structure are compared with �elds in the found structure.8

Extract values from the �le reader structure The following accessorsperform self-evident functions:Prototype int QIO_get_reader_latdim(QIO_Reader *in);int *QIO_get_reader_latsize(QIO_Reader *in);uint32_t QIO_get_reader_last_checksuma(QIO_Reader *in);uint32_t QIO_get_reader_last_checksumb(QIO_Reader *in);Extract values from the �le writer structure The following accessorsperform self-evident functions:Prototype uint32_t QIO_get_writer_last_checksuma(QIO_Writer *out);uint32_t QIO_get_writer_last_checksumb(QIO_Writer *out);Extract values from the private record metadata structure The fol-lowing accessors perform self-evident functions:Prototype int QIO_get_recordtype(QIO_RecordInfo *record_info);int *QIO_get_hyperlower(QIO_RecordInfo *record_info);int *QIO_get_hyperupper(QIO_RecordInfo *record_info);char *QIO_get_datatype(QIO_RecordInfo *record_info);char *QIO_get_precision(QIO_RecordInfo *record_info);int QIO_get_colors(QIO_RecordInfo *record_info);int QIO_get_spins(QIO_RecordInfo *record_info);int QIO_get_typesize(QIO_RecordInfo *record_info);int QIO_get_datacount(QIO_RecordInfo *record_info);char *QIO_get_record_date(QIO_RecordInfo *record_info);4.3 Opening and closing binary �lesThe �le opening procedures di�er, depending on whether the �le is opened forreading or writing.Open a �le for writingPrototype QIO_Writer *QIO_open_write(QIO String *xml_file,char *filename, int volfmt, QIO_Layout *layout,QIO_Filesystem *fs, QIO_Oflag *oflag);Purpose Opens a named �le for writing and writes the �le metadata.Example QIO_Writer *outfile;QIO_Layout layout;outfile = QIO_open_write(xml_file_out, filename,QIO_SINGLEFILE, &layout, &fs,&oflag); 9

The QIO_Writer * return value points to the �le handle used in subsequentreferences to the �le. The �rst argument is the user �le XML. To create theQIO_String structure, starting from a plain character array, use the commandPrototype void QIO_string_set(QIO String *qs, const char *const string)Example QIO String *xml_file = QIO_string_create();QIO_string_set(xml_file, xmlstring);The third-to-last argument is the layout structure. It is assumed that theuser has prepared it as described above.The next-to-last argument speci�es the I/O-nodes in use. Here are the mem-bers that require de�nition:typedef struct {int (*my_io_node)(const int node); /* Which node does I/O for a node */int (*master_io_node)(void); /* Which node is the master */} QIO_Filesystem;For exampleQIO_Filesystem fs;fs.my_io_node = io_node;fs.master_io_node = master_io_node;where the io_node function io_node(node) returns the number of the nodethat does I/O for node node and the master_io_node function returns thenumber of the master I/O node. If the fs parameter is NULL (zero) in thecall to QIO_open_write, QIO assumes each node is its own I/O node, and themaster node is node 0. The same defaults apply to the separate members if thestructure pointer is non-null, but a member is a null function pointer.The QIO_Oflag structure is de�ned as follows:typedef struct {int serpar; /* QIO_SERIAL or QIO_PARALLEL */int mode; /* QIO_TRUNC or QIO_APPEND */int ildgstyle; /* QIO_ILDGNO or QIO_ILDGLAT */QIO_String *ildgLFN; /* NULL if unknown */} QIO_Oflag;The serpar member speci�es whether the component �le(s) is(are) to bewritten in parallel (many nodes writing to the same component �le) or serially(only one writer for each component �le). The mode member speci�es whetherthe �le is to be truncated or data is to be appended. The ildgstyle memberspeci�es whether the �le (currently only a lattice �le) is to be written withadditional LIME records for ILDG compatibility. If so, a pointer to the ILDGlogical �le name (LFN) must be supplied through the ildgLFN member.The structure is initialized as in the following example:10

QIO_Oflag oflag;oflag.serpar = QIO_SERIAL;oflag.mode = QIO_TRUNC;oflag.ildgstye = QIO_ILDGLAT;oflag.ildgLFN = QIO_string_create();QIO_string_set(oflag.ildgLFN,"MILC.ks_imp_3flav.4096f21b708m0031m031b.696");(Please note, this illustrative LFN is not valid.)When the &oflag parameter is passed as a null pointer, the default valuesare serial mode, truncate, non-ILDG, and null LFN. If the LFN pointer is null,the ILDG LFN record is not written. It must then be appended later to producea �le that is fully ILDG compatible.Parallel I/O is supported only in single�le format. If parallel mode is re-quested for other formats, the request is currently ignored. Of course, in a sensemulti�le and part�le formats are parallel formats, but the component �les areopened by only one node. So we say each component �le is accessed serially. Itis conceivable in future versions of QIO that one could have a subset of nodeson a partition open the same partition �le. We would call that parallel I/O ofa partition �le.Caution: If a �le is opened for appending, QIO presently does not verifythat the �elds being appended conform to the lattice dimensions and layout ofthe �elds already present.Open a �le for readingPrototype QIO_Reader *QIO_open_read(QIO String *xml_file,char *filename, QIO_Layout *layout,QIO_Filesystem *fs, QIO_Iflag *iflag);Purpose Opens a named �le for reading and reads the �le metadata.Example QIO_Reader *infile;QIO_Layout layout;infile = QIO_open_read(xml_file_in, filename,&layout, QIO_SERIAL);The QDP_Reader return value is the �le handle used in subsequent referencesto the �le. A null return value signals an error. It is assumed the user hascreated the �le metadata structure with address xml_file, so it can be readfrom the head of the �le and inserted. Space for the string within the structureis reallocated to a su�cient size by QIO. The other arguments have the samemeaning as with QIO_open_write. The volume format is auto-detected so isnot speci�ed by the calling program. It is assumed that the user has preparedthe layout argument as described above.The QIO_Iflag structure is de�ned as follows:typedef struct {int serpar; /* QIO_SERIAL or QIO_PARALLEL */int volfmt; /* QIO_UNKNOWN, QIO_SINGLEFILE, QIO_PARTFILE,11

QIO_MULTIFILE */} QIO_Iflag;A �le is usually opened with automatic detection of the �le format. However,confusion arises when the �le appears in both formats in the same directory. Inthat case the volfmt member is needed to specify a preference. Otherwise, theparameter can be safely passed as QIO_UNKNOWN or QIO_SINGLEFILE, regardlessof the �le format, and the format will be set according to the existing �le. Thestructure also has a placeholder for future use for specifying whether the �le isto be read in parallel or serially. The structure is initialized as in the followingexample:QIO_Iflag iflag;iflag.serpar = QIO_SERIAL;iflag.mode = QIO_UNKNOWN;These are the default values used when the &iflag parameter is passed as anull pointer.In normal operation the user speci�es the lattice dimension in the QIO_Layoutstructure, and an error condition occurs, if the dimensions in the �le do notmatch the dimensions in the layout structure. Provision is made to operate indiscovery mode. If the layout latdim member is zero when QIO_open_read iscalled, no checking takes place and the lattice dimensions are taken from the�le and kept with the QIO_Reader structure. The user's QIO_layout structureis not altered by QIO. Instead, it works with an updated internal copy of thatstructure, kept in the opaque QIO_Reader. Two accessor functions are providedfor extracting the dimensions from the reader:Get the number of spacetime dimensionsPrototype int QIO_get_reader_latdim(QIO_Reader *in);Purpose Returns the number of spacetime dimensions.Example int latdim = QIO_get_reader_latdim(qio_in);Get the lattice size in each directionPrototype int *QIO_get_reader_latsize(QIO_Reader *in);Purpose Returns a pointer to an integer array of sizes for each dimension.Example int *latsize = QIO_get_reader_latsize(qio_in);Allocation of the array is controlled by QIO. The array storage is released bythe QIO_close_read call.Close an output �lePrototype int QIO_close_write(QIO_Writer *out);Example QIO_close_write(outfile);12

Close an input �lePrototype int QIO_close_read(QIO_Reader *in);Example QIO_close_read(infile);In both cases the integer return value is 0 for success and 1 for failure.4.4 Writing and reading �elds, arrays of �elds, or arraysof global dataPrototype int QIO_write(QIO_Writer *out,QIO_RecordInfo *record_info,QIO String *xml_record,void (*get)(char *buf, size_t index, size_t count, void *arg),int datum_size, int word_size, void *arg);Example QIO_RecordInfo *rec_info;rec_info = QIO_create_record_info(QDP_FIELD,"QDP_F_Real","F",0,0,0,0,QLA_Ns,size,1);QIO_write(outfile, rec_info, xml_record, QDP_F_get_R,sizeof(QLA_Real), sizeof(QLA_Real), (void *)field);The integer return value is 0 for success and 1 for failure. It is assumed the userhas prepared the record metadata and the �eld data in advance.The input arguments are as follows:out The QIO_Writer handle returned by QIO_open_write.record_info The private metadata for the record (see below).xml_record The user-constructed metadata for the record.get Factory function (see below).datum_size The total number of bytes required to serialize the datum.word_size The number of bytes in a datum word.arg Pass-through parameters for the factory function.The second argument, the record_info structure, contains information aboutthe data format, as described in Sec. 4.2. It must be created by the caller inall cases. For output, the caller must set its values. For input, the values arereturned from the �le.The fourth argument is a factory function that, in this example, is invokedby QIO like this:QDP_F_get_R(buf, index, count, field);It is expected to �ll the QIO-supplied bu�er buf with a byte-serialized copy ofthe �eld datum at site index index. The parameter count speci�es the arraylength of the �eld datum at that site. The datum size parameter datum_sizegives the total number of bytes to be delivered as the product of the countparameter and the byte length of the array element on that site.It is up to the applications programmer to insure that the data base-type(int,
oat, double) word order produced by the factory function follows the13

SciDAC convention for the speci�ed datatype. However byte ordering within aword (big endian or little endian) processed by the factory functions should be inthe native order of the architecture. Any byte rearrangement needed to convertto and from standard �le endianness is the responsibility of QIO. To this endthe user must specify the base-type word length of the data in bytes throughthe parameter word_size. All numeric SciDAC data types are homogeneous inword size, so a single parameter su�ces.For example for an array of four single precision color vector �elds, eachconsisting of three complex numbers, there are 4 � 3 � 2 = 24 real values persite, each of them single-precision
oating point numbers. The word size forthe IEEE
oat datatype is 4 (bytes). The factory function must produce thestandard word order: real part of the �rst color component of the �rst colorvector, followed by the imaginary part of the same component, followed by thereal and then imaginary parts of the second color component of the �rst colorvector, etc. The count is 4 (color vectors), and the datum size is 4 � 24 = 96(total bytes per call). [The type size of 3�2�4 = 12 (bytes) and the count of 4(array elements) were speci�ed when creating the QIO_record_info structure.]The same factory function signature is used for global and �eld data, eventhough for global data the site index parameter has no meaning. The applica-tions programmer would doubtless provide di�erent functions for the two cases.For �eld data, QIO calls the factory function once per lattice site. For globaldata, QIO calls only once and expects to take all the data in that call. It isthe responsibility of the applications programmer to provide the appropriatefactory function for each case.Since the open operation has already registered a node_number function,QIO knows to ask only for a site on the present node. The factory function isnot required to fetch data from a di�erent node.The seventh argument of QIO_write is passed through as the fourth argu-ment of the get function. It can be used to identify the �eld from which thedata is required. In this way only one factory function is needed for each QDPand QLA datatype.Read a �eld, array of �elds, or array of global dataPrototype int QIO_read(QIO_Reader *in,QIO_RecordInfo *record_info, QIO String *xml_record,void (*put)(char *buf, int coords[], void *arg),int datum_size, void *arg);Example QIO_read(infile, rec_info, xml_record, QDP_F_put_r,sizeof(QLA_Real), (void *)field);The integer return value is 0 for success and 1 for failure. It is assumed the userhas prepared the record metadata and the �eld data in advance. This operationis the inverse of the write operation described. The put factory function doesthe reverse of the get function. 14

Read only the record metadata This utility makes it possible to examineonly the header of the record in order to decide whether to continue reading.The state of the �le is remembered, so a subsequent call to QIO_read reads thefull record as though this call had not been made.Prototype int QIO_read_record_info(QIO_Reader *in,QIO_RecordInfo *record_info, QIO String *xml_record);Example QIO_read_record_info(infile, rec_info, xml_record);Skip to the next recordPrototype int QIO_next_record(QIO_Reader *in);Example QIO_next_record(infile);Set and determine the verbosity level A user can control the verbosityof QIO. Choices in increasing degree of chatter areQIO_VERB_OFFQIO_VERB_LOWQIO_VERB_MEDQIO_VERB_REGQIO_VERB_DEBUGPrototype int QIO_verbose(int level);Example oldlevel = QIO_verbose(QIO_OFF);A user can also inquire about the current verbosity level with the followingfunction.Prototype level = QIO_verbosity();4.5 File format conversion - utilitiesThe following single-processor utilities are generated when the package is builtfor a single processor:� qio-convert-mesh-singlefs Converts �les from single �le to partition�le format and vice versa. Optionally, the conversion from partition �leto single �le is done with ILDG compatibility. The partition �les areproduced (found) in the same directory. There is one �le per node.� qio-convert-mesh-pfs Same as above, except that the partition �les arescattered among multiple �le systems, so a path table must be suppliedto locate them.� qio-convert-mesh-ppfsThis utility groups nodes into I/O families withone I/O node (hence one �le) per family.15

� qio-copy-mesh-ppfs Utility for copying �les from source directories tolocal �le systems on the appropriate I/O nodes.� qio-convert-nerscUtility for converting a �le in NERSC archive formatto SciDAC �le format. Optionally, the resulting �le also made ILDGcompatible.4.6 File format conversion - APIThe API provides subroutines for converting between single �le and partition�le format. Since the partition �le format depends on which nodes are I/Onodes and it depends on the data layout as it appears on the compute nodes,the complete code for carrying out �le conversion requires an implementationsuited to the locale.The �le conversion utilities require information about the data layout onthe compute nodes. This information is provided by the QIO_Layout struc-ture as described above. Furthermore, it requires information about the �lesystem and the identity of the I/O nodes. This information is encapsulatedin a QIO_FileSystem structure, which must be completed by the applicationsprogrammer.typedef struct {int number_io_nodes;int type;int (*my_io_node)(const int node);int (*master_io_node)(void);int *io_node;char **node_path;} QIO_Filesystem;The number_io_nodes member speci�es the number of I/O nodes. If it isthe same as the number_of_nodes member of the layout structure, each nodedoes its own I/O.The type member is either QIO_SINGLE_PATH or QIO_MULTI_PATH. In single-path mode, all �les are found in the same directory. In multi-path mode, aseparate directory is speci�ed for each I/O node.The my_io_node function maps a node to its I/O node, based on the logicalnode number (rank). The master_io_node function returns the number of themaster node.The io_node table lists the numbers of the I/O nodes. If the number ofI/O nodes is the same as the number of nodes, this table is not required, sinceeach node does its own I/O. In that case the my_io_node function should bethe identity map.The node_path table is required only in multi-path mode. It lists the direc-tories where the �les for the I/O nodes are to be placed. The table has one entryfor each I/O node. The entries must correlate with the entries in the io_nodetable. 16

Convert single �le to partition �le formatPrototype int QIO_single_to_part(const char filename[],QIO_Filesystem *fs, QIO_Layout *layout);Purpose Convert an existing �le from single to partition format.Example QIO_single_to_part(filename, fs, mpp_layout);When converting a non-SciDAC, but ILDG-compatible, �le to part�le for-mat, the resulting part�les are written in SciDAC format. Non-ILDG LIMErecords are ignored. Currently, the ILDG LFN record is also ignored. Whenconverting a SciDAC ILDG-compatible �le to part�le format, the ILDG records,including the ILDG LFN, are also converted.Convert partition �le to single �le formatPrototype int QIO_part_to_single(const char filename[],QIO_Filesystem *fs, QIO_Layout *layout);Purpose Convert an existing �le from single to partition format.Example QIO_part_to_single(filename, fs, mpp_layout);As a matter of convenience, the �le conversion application may be designedso that the code gets the lattice dimension and size from the �le. The �le shouldbe opened by QIO_open_read with the layout latdim member set to zero. Thelattice dimensions are then taken from the �le and kept with the QIO_Readerstructure. Two accessor utilities are provided for extracting the dimensions fromthe opaque structure, as described above.4.7 String Handling with QIOA few utilities are provided for manipulating the QIO string type QIO Stringrequired by the API.Creating an empty QIO StringPrototype QIO String *QIO_string_create(void);Purpose Creates an empty string.Example fileinfo = QIO_string_create();Filling a QIO string from a null-terminated character arrayPrototype QIO String *QIO_string_set(QIO String | *qs,const char *const string);Purpose Inserts the null-terminatedcharacter array string into the string qs.Example QIO_string *recinfo = QIO_string_create();QIO_string_set(recinfo,string);17

Copying a QIO stringPrototype QIO String *QIO_string_copy(QIO String *dest, QIO String *src);Purpose Copies the string.Example QIO_string_copy(newxml,oldxml);Resizing a stringPrototype QIO String *QIO_string_realloc(QIO String *dest, int length);Purpose Change the length of the string with truncation if necessary.Example QIO_string_realloc(xml,32);Appending to a stringPrototype QIO String *QIO_string_append(QIO String *dest, const char *string);Purpose Append \string" to the end of the QIO string \dest".Example QIO_string_append(xml,''<info>'';Accessing the string lengthPrototype size_t QIO_string_bytes(const QIO String *const xml);Purpose Returns a pointer to the null-terminated character arrayin the string.Example printf("%s\n", QIO_string_bytes(xml));Accessing the string character arrayPrototype char *QIO_string_ptr(const QIO String *const xml);Purpose Returns the length of the string.Example length = QIO_string_length(xml);Destroying a QIO stringPrototype void QIO_string_destroy(QIO String *xml);Purpose Frees storage.Example QIO_string_destroy(xml);4.8 Compilation with QIOThere is a single top-level header �le qio.h and a single library libqio.a.The QIO package is currently built in conjunction with the independent LIMEpackage through configure, make and make install.
18

A Creating USQCD Standard FilesQIO provides some support for reading and writing USQCD standard �le for-mats. These standard �les conform to the generic SciDAC �le format, butthe order and content of records and the user record and �le XML strings arestandardized. QIO does not enforce the record order or content. This responsi-bility is left to the applications programmer. But it supports the encoding anddecoding of the standard record and �le XML strings.This section describes the standard USQCD �le formats and the QIO APIfor constructing and parsing the standard XML strings.A.1 USQCD Lattice FormatThis format is consistent with the ILDG standard.There is one logical record, namely the gauge �eld. The user �le XML is notspeci�ed in this standard. The user record XML has the following format:<?xml version="1.0" encoding="UTF-8"?><usqcdInfo><version>1.0</version><plaq>(plaquette)</plaq><linktr>(link trace)</linktr><info>(information)</info></usqcdInfo>where the plaquette is the average plaquette normalized to unit trace for theunit matrix and the link trace is the real part of the average of the trace of thelink matrices. These values are presented in standard
oating point notationwith precision appropriate to the precision of the stored �eld. The information�eld can be any string, including an XML substring. The current string limit is1023 bytes.This XML string can be constructed by any means before converting it toa QIO_String type and passing it to QIO_write. However, QIO provides aconvenience utility for constructing it. Construction takes two steps. First theuser record data structure is created. Then the data structure is encoded as anXML string.Creating the USQCD gauge �eld record information structurePrototype QIO_USQCDLatticeInfo *QIO_create_usqcd_lattice_info(char *plaq, char *linktr, char *info);Example rec_info = QIO_create_usqcd_lattice_info("0.8941325","0.0314259",myXML);Prototype void QIO_encode_usqcd_lattice_info(QIO_String *record_string,QIO_USQCDLatticeInfo *record_info);Example QIO_encode_usqcd_lattice_info(rec_string, rec_info);The resulting string is then passed to QIO_write.19

Destroying the record information structurePrototype void QIO_destroy_usqcd_lattice_info(QIO_USQCDLatticeInfo *rec_info);Purpose Frees storage.Example QIO_destroy_usqcd_lattice_info(rec_info);When the �le is read, the user record XML can be parsed by converting theXML string to a data structure and then calling accessors for the data items.Prototype int QIO_decode_usqcd_lattice_info(QIO_USQCDLatticeInfo *record_info,QIO_String *record_string);Example status = QIO_decode_usqcd_lattice_info(rec_info, rec_string);The return value is zero for success and nonzero if errors are encountered.It may be useful to know whether the �eld was found during parsing. A setof utilities provides that capability.Determining whether the �eld occursPrototype int QIO_defined_plaq(QIO_USQCDLatticeInfo *rec_info);Prototype int QIO_defined_linktr(QIO_USQCDLatticeInfo *rec_info);Prototype int QIO_defined_info(QIO_USQCDLatticeInfo *rec_info);Purpose Returns 1 if the �eld was found and 0 if not.Accessing the valuesPrototype char *QIO_get_plaq(QIO_USQCDLatticeInfo *rec_info);Prototype char *QIO_get_linktr(QIO_USQCDLatticeInfo *rec_info);Prototype char *QIO_get_info(QIO_USQCDLatticeInfo *rec_info);Purpose Returns the value as a pointer to the character string.Example sscanf(QIO_get_plaq(rec_info),"%f",&plaq);The gauge �eld byte order conforms to the ILDG standard. The site orderis lexicographic with the 0 (x) coordinate varying most rapidly. The data foreach lattice site consists of four SU(3) link matrices. Floating points values arewritten bigendian, with each matrix presented as three rows of three complexnumbers. Single and double precision are permitted.The data type string is USQCD_F3_ColorMatrix, a synonym for QDP_F3_ColorMatrixin older formats, or USQCD_D3_ColorMatrix for double precision.Here is an example of a call to create the private record XML:QIO_RecordInfo *rec_info;rec_info = QIO_create_record_info(QIO_FIELD, 0, 0, 0, "USQCD_F3_ColorMatrix","F", 3, 72, 4); 20

A.2 USQCD Dirac Propagator FormatThere are four standard propagator �le formats. Each �le includes the source�eld or �elds as a complex scalar or Dirac �eld as well as the solution �elds.1. C1D12: One complex scalar source record and twelve solution records,one for each source spin and color. The solution records correspond toeach source spin and color. The order of source spin and color should besequential with color varying most rapidly.2. CD_PAIRS: Alternating source and solution for any number of pairs. Thesource in each case is a complex �eld.3. DD_PAIRS: Alternating source and solution for any number of pairs. Thesource in each case is a Dirac �eld.4. LHPC: [USQCD standard under development.]In all cases the source can be speci�ed either on a time slice or as a full �eld.The CD_PAIRS and DD_PAIRS formats could be used for a series of randomsource/solution pairs, or they could be used for a series of sequential sourcesplus their solutions. Thus in some, but not all cases, the �le contains twelvesolutions, one for each source color and spin. When it does, the order of thepairs should be the same as for the C1D12 format, namely, sequential with colorvarying most rapidly.A.2.1 File informationIn all cases the user �le information is prescribed as follows. It is passed asthe xml_file parameter to QIO_open_write and returned as the xml_fileparameter by QIO_open_read.<?xml version="1.0" encoding="UTF-8"?><usqcdPropFile><version>1.0</version><type>(type string)</type><info>(information)</info></usqcdPropFile>where the �le type string is one of"USQCD_DiracFermion_ScalarSource_TwelveSink""USQCD_DiracFermion_Source_Sink_Pairs""USQCD_DiracFermion_ScalarSource_Sink_Pairs""LHPC_DiracPropagator"and the information �eld is at the user's discretion.There are convenience function for constructing this string. The �rst step isto create the �le info data structure: 21

Creating the USQCD propagator �le information data structurePrototype QIO_USQCDPropFileInfo *QIO_create_usqcd_propfile_info(int type, char *info);Example file_info = QIO_create_usqcd_propfile_info(QIO_USQCDPROPFILETYPE_C1D12, myXML);The type parameter is an integer (not a string) taking on one of these values:QIO_USQCDPROPFILETYPE_C1D12QIO_USQCDPROPFILETYPE_DD_PAIRSQIO_USQCDPROPFILETYPE_CD_PAIRSQIO_USQCDPROPFILETYPE_LHPCThe data structure for the �le information is then converted to an XMLstring:Encoding the �le informationPrototype void QIO_encode_usqcd_propfile_info(QIO_String *file_string,QIO_USQCDPropFileInfo *file_info);Example QIO_encode_usqcd_propfile_info(file_string, file_info);The resulting string is then passed to QIO_open_write.Destroying the �le information structurePrototype void QIO_destroy_usqcd_propfile_info(QIO_USQCDPropFileInfo *file_info);Purpose Frees storage.Example QIO_destroy_usqcd_propfile_info(file_info);Conversely, after obtaining the string from QIO_open_read, it can be de-coded (converted to a data structure) as follows:Prototype int QIO_decode_usqcd_propfile_info(QIO_USQCDPropfileInfo *file_info,QIO_String *file_string);Example status = QIO_decode_usqcd_propfile_info(file_info, file_string);after which the information can be extracted with the accessors.Determining whether the �eld occursPrototype int QIO_defined_propfile_type(QIO_USQCDPropFileInfo *file_info);Prototype int QIO_defined_propfile_info(QIO_USQCDPropFileInfo *file_info);Purpose Returns 1 if the �eld was found and 0 if not.22

Accessing the valuesPrototype int QIO_get_propfile_type(QIO_USQCDPropFileInfo *file_info);Prototype char *QIO_get_propfile_info(QIO_USQCDPropFileInfo *file_info);The returned integer �le type is one of the values listed above for creatingthe �le info data structure or QIO_ERR_FILE_INFO if the type is unrecognized.A.2.2 Source informationFor each of the formats there are one or more source records. The user recordXML is prescribed as follows.The record information string for the source record is also prescribed.<?xml version="1.0" encoding="UTF-8"?><usqcdSourceInfo><version>1.0</version><info> collaboration use </info></usqcdSourceInfo>The operations for creating, encoding, decoding, and accessing values followthe same pattern as with the �le information, so we simply list them:Convenience functions for the propagator source recordPrototype QIO_USQCDPropSourceInfo *QIO_create_usqcd_propsource_info(char *info);Prototype void QIO_destroy_usqcd_propsource_info(QIO_USQCDPropSourceInfo *rec_info);Prototype void QIO_encode_usqcd_propsource_info(QIO_String *record_string,QIO_USQCDPropSourceInfo *record_info);Prototype int QIO_decode_usqcd_propsource_info(QIO_USQCDPropSourceInfo *record_info,QIO_String *record_string);Prototype char *QIO_get_usqcd_propsource_info(QIO_USQCDPropSourceInfo *record_info);Prototype int QIO_defined_usqcd_propsource_info(QIO_USQCDPropSourceInfo *record_info);As with all QIO records, in addition to providing the user record informa-tion, it is necessary to supply the private record information. The followingparameters are passed to QIO_create_record_info before writing the record:QIO_RecordInfo *QIO_create_record_info(int recordtype, int lower[],int upper[], int n, 23

char *datatype, char *precision,int colors, int spins, int typesize,int datacount);The record type �eld is QIO_FIELD or QIO_HYPER. In the former case it is per-missible to pass null pointers for lower and upper and a zero value for n. For asource speci�ed on a single time slice, these arrays specify the bounds of the timeslice, as illustrated in Sec. 4.2 above. For complex source �elds, the data type�eld is "USQCD_F_Complex" or "USQCD_D_Complex" and for Dirac vector source�elds, the data type �eld is "USQCD_F3_DiracFermion"or "USQCD_D3_DiracFermion".The precision �eld in either case is "F" or "D". The colors and spins parametersapply to a Dirac spinor �eld and should be zero for a complex source �eld. Thetype size speci�es the byte count for the site data, and the data count �eldshould always be 1.A.2.3 Dirac solution �eldsFor each of the above �le formats there are Dirac solution �elds. The user recordinformation is prescribed as follows:<?xml version="1.0" encoding="UTF-8"?><usqcdPropInfo><version>1.0</version><spin>(spin)</spin><color>(color)</color><info>(information)</info></usqcdPropInfo>The spin and color values are required for the C1D12 format and are optionalfor the other formats. QIO does not enforce this requirement, but provides twoconvenience functions for creating the data structure for this string dependingon whether the spin and color are to be encoded.Convenience functions for the propagator source record

24

Prototype QIO_USQCDPropRecordInfo *QIO_create_usqcd_proprecord_info(char *info);Prototype QIO_USQCDPropRecordInfo *QIO_create_usqcd_proprecord_sc_info(int spin, int color, char *info);Prototype void QIO_destroy_usqcd_proprecord_info(QIO_USQCDPropRecordInfo *rec_info);Prototype void QIO_encode_usqcd_proprecord_info(QIO_String *record_string,QIO_USQCDPropRecordInfo *record_info);Prototype int QIO_decode_usqcd_proprecord_info(QIO_USQCDPropRecordInfo *record_info,QIO_String *record_string);Prototype int QIO_defined_usqcd_proprecord_spin(QIO_USQCDPropRecordInfo *record_info);Prototype int QIO_defined_usqcd_proprecord_color(QIO_USQCDPropRecordInfo *record_info);Prototype int QIO_defined_usqcd_proprecord_info(QIO_USQCDPropRecordInfo *record_info);Prototype int QIO_get_usqcd_proprecord_spin(QIO_USQCDPropRecordInfo *record_info);Prototype int QIO_get_usqcd_proprecord_color(QIO_USQCDPropRecordInfo *record_info);Prototype char *QIO_get_usqcd_proprecord_info(QIO_USQCDPropRecordInfo *record_info);For the private record information structure, the following �elds are used:The data type is either "USQCD_F3_DiracFermion"or "USQCD_D3_DiracFermion"for single or double precision, respectively, and the precision is likewise either"F" or "D".A.3 USQCD Staggered Propagator FormatThe staggered propagator formats follow the same pattern as the �rst threeDirac propagator formats. Each �le includes the source �eld or �elds as acomplex scalar or color vector �eld as well as the solution �elds.1. C1V3: One complex scalar source record and three solution records, onefor each source color.2. CV_PAIRS: Alternating source and solution for any number of pairs. Thesource in each case is a complex �eld.3. VV_PAIRS: Alternating source and solution for any number of pairs. Thesource in each case is a color vector �eld.In all cases the source can be speci�ed either on a time slice or as a full �eld.The CV_PAIRS and VV_PAIRS formats could be used for a series of random25

source/solution pairs, or they could be used for a series of sequential sourcesplus their solutions. Thus in some, but not all cases, the �le contains sets ofthree solutions, one for each source color.A.3.1 File informationIn all cases the user �le information is prescribed as follows. It is passed asthe xml_file parameter to QIO_open_write and returned as the xml_fileparameter by QIO_open_read.<?xml version="1.0" encoding="UTF-8"?><usqcdKSPropFile><version>1.0</version><type>(type string)</type><info>(information)</info></usqcdKSPropFile>where the �le type string is one of"USQCD_ColorVector_ScalarSource_ThreeSink""USQCD_ColorVector_Source_Sink_Pairs""USQCD_ColorVector_ScalarSource_Sink_Pairs"and the information �eld is at the user's discretion.As with the Dirac propagator, there are convenience function for construct-ing this string. The �rst step is to create the �le info data structure:Creating the USQCD propagator �le information data structurePrototype QIO_USQCDKSPropFileInfo *QIO_create_usqcd_kspropfile_info(int type, char *info);Example file_info = QIO_create_usqcd_kspropfile_info(QIO_USQCDKSPROPFILETYPE_C1V3, myXML);The type parameter is an integer (not a string) taking on one of these values:QIO_USQCDKSPROPFILETYPE_C1V3QIO_USQCDKSPROPFILETYPE_VV_PAIRSQIO_USQCDKSPROPFILETYPE_CV_PAIRSThe data structure for the �le information is then converted to an XMLstring:Encoding the �le informationPrototype void QIO_encode_usqcd_kspropfile_info(QIO_String *file_string,QIO_USQCDKSPropFileInfo *file_info);Example QIO_encode_usqcd_kspropfile_info(file_string, file_info);The resulting string is then passed to QIO_open_write.26

Destroying the �le information structurePrototype void QIO_destroy_usqcd_kspropfile_info(QIO_USQCDKSPropFileInfo *file_info);Purpose Frees storage.Example QIO_destroy_usqcd_kspropfile_info(file_info);Conversely, after obtaining the string from QIO_open_read, it can be de-coded (converted to a data structure) as follows:Prototype int QIO_decode_usqcd_kspropfile_info(QIO_USQCDKSPropfileInfo *file_info,QIO_String *file_string);Example status = QIO_decode_usqcd_kspropfile_info(file_info, file_string);after which the information can be extracted with the accessors.Determining whether the �eld occursPrototype int QIO_defined_kspropfile_type(QIO_USQCDKSPropFileInfo *file_info);Prototype int QIO_defined_kspropfile_info(QIO_USQCDKSPropFileInfo *file_info);Purpose Returns 1 if the �eld was found and 0 if not.Accessing the valuesPrototype int QIO_get_kspropfile_type(QIO_USQCDKSPropFileInfo *file_info);Prototype char *QIO_get_kspropfile_info(QIO_USQCDKSPropFileInfo *file_info);The returned integer �le type is one of the values listed above for creatingthe �le info data structure or QIO_ERR_FILE_INFO if the type is unrecognized.A.3.2 Source informationFor each of the formats there are one or more source records. The user recordXML is prescribed as follows.The record information string for the source record is also prescribed.<?xml version="1.0" encoding="UTF-8"?><usqcdSourceInfo><version>1.0</version><info> collaboration use </info></usqcdSourceInfo>The operations for creating, encoding, decoding, and accessing values followthe same pattern as with the �le information, so we simply list them:27

Convenience functions for the kspropagator source recordPrototype QIO_USQCDKSPropSourceInfo *QIO_create_usqcd_kspropsource_info(char *info);Prototype void QIO_destroy_usqcd_kspropsource_info(QIO_USQCDKSPropSourceInfo *rec_info);Prototype void QIO_encode_usqcd_kspropsource_info(QIO_String *record_string,QIO_USQCDKSPropSourceInfo *record_info);Prototype int QIO_decode_usqcd_kspropsource_info(QIO_USQCDKSPropSourceInfo *record_info,QIO_String *record_string);Prototype char *QIO_get_usqcd_kspropsource_info(QIO_USQCDKSPropSourceInfo *record_info);Prototype int QIO_defined_usqcd_kspropsource_info(QIO_USQCDKSPropSourceInfo *record_info);As with all QIO records, in addition to providing the user record informa-tion, it is necessary to supply the private record information. The followingparameters are passed to QIO_create_record_info before writing the record:QIO_RecordInfo *QIO_create_record_info(int recordtype, int lower[],int upper[], int n,char *datatype, char *precision,int colors, int spins, int typesize,int datacount);The record type �eld is QIO_FIELD or QIO_HYPER. In the former case it is per-missible to pass null pointers for lower and upper and a zero value for n. For asource speci�ed on a single time slice, these arrays specify the bounds of the timeslice, as illustrated in Sec. 4.2 above. For complex source �elds, the data type�eld is "USQCD_F_Complex" or "USQCD_D_Complex" and for color vector source�elds, the data type �eld is "USQCD_F3_ColorVector" or "USQCD_D3_ColorVector".The precision �eld in either case is "F" or "D". The spins parameter is zero.The colors parameter applies to a color vector �eld and should be zero for acomplex source �eld. The type size speci�es the byte count for the site data,and the data count �eld should always be 1.A.3.3 Color vector solution �eldsFor each of the above �le formats there are color vector solution �elds. The userrecord information is prescribed as follows:<?xml version="1.0" encoding="UTF-8"?><usqcdKSPropInfo><version>1.0</version><color>(color)</color> 28

<info>(information)</info></usqcdKSPropInfo>The color value is required for the C1V3 format and is optional for the otherformats. QIO does not enforce this requirement, but provides two conveniencefunctions for creating the data structure for this string depending on whetherthe color is to be encoded.Convenience functions for the propagator source recordPrototype QIO_USQCDKSPropRecordInfo *QIO_create_usqcd_ksproprecord_info(char *info);Prototype QIO_USQCDKSPropRecordInfo *QIO_create_usqcd_ksproprecord_c_info(int color, char *info);Prototype void QIO_destroy_usqcd_ksproprecord_info(QIO_USQCDKSPropRecordInfo *rec_info);Prototype void QIO_encode_usqcd_ksproprecord_info(QIO_String *record_string,QIO_USQCDKSPropRecordInfo *record_info);Prototype int QIO_decode_usqcd_ksproprecord_info(QIO_USQCDKSPropRecordInfo *record_info,QIO_String *record_string);(QIO_USQCDKSPropRecordInfo *record_info);Prototype int QIO_defined_usqcd_ksproprecord_color(QIO_USQCDKSPropRecordInfo *record_info);Prototype int QIO_defined_usqcd_ksproprecord_info(QIO_USQCDKSPropRecordInfo *record_info);(QIO_USQCDKSPropRecordInfo *record_info);Prototype int QIO_get_usqcd_ksproprecord_color(QIO_USQCDKSPropRecordInfo *record_info);Prototype char *QIO_get_usqcd_ksproprecord_info(QIO_USQCDKSPropRecordInfo *record_info);For the private record information structure, the following �elds are used:The data type is either "USQCD_F3_ColorVector" or "USQCD_D3_ColorVector"for single or double precision, respectively, and the precision is likewise either"F" or "D".
29

